Permutation Sequence
Total Accepted: 6325 Total Submissions: 29550
The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
Have you been asked this question in an interview?
假设有n个元素,第K个permutation是
a1, a2, a3, ..... ..., an那么a1是哪一个数字呢?那么这里,我们把a1去掉,那么剩下的permutation为a2, a3, .... .... an, 共计n-1个元素。 n-1个元素共有(n-1)!组排列,那么这里就可以知道设变量K1 = Ka1 = K1 / (n-1)!// 第一位的选择下标同理,a2的值可以推导为K2 = K1 % (n-1)!
a2 = K2 / (n-2)!。。。。。K(n-1) = K(n-2) /2!
a(n-1) = K(n-1) / 1!an = K(n-1)
1 public class Solution { 2 public String getPermutation(int n, int k) { 3 int data[]=new int[10]; 4 boolean visited[]=new boolean[10]; 5 data[0]=data[1]=1; 6 ArrayListlist=new ArrayList (); 7 for(int i=1;i<=n;i++) 8 { 9 data[i]=data[i-1]*(i);10 list.add(i);11 }12 String result="";13 k--;14 for(int i=n-1;i>=0;i--)15 {16 int cur=k/data[i];17 int j=1;18 for(;j<9;j++) //从数组中 针对未访问过的元素visited[]=false 找第cur个,找到的为j19 {20 if(visited[j]==false)21 cur--;22 if(cur<0)23 break;24 }25 visited[j]=true;26 result+=(j);27 k=k%data[i];28 }29 return result;30 }31 32 }
解二
1 public class Solution { 2 public String getPermutation(int n, int k) { 3 int data[]=new int[n+1]; 4 boolean visited[]=new boolean[n+1]; 5 data[0]=data[1]=1; 6 ArrayListlist=new ArrayList (); 7 for(int i=1;i<=n;i++) 8 { 9 data[i]=data[i-1]*(i);10 list.add(i);11 }12 String result="";13 k--;14 for(int i=n-1;i>=0;i--)15 {16 int cur=k/data[i];17 result+=list.remove(cur); //第cur个未正解,从list中删除18 k=k%data[i];19 }20 return result;21 }22 }
基本思路就是